Publications
2025
Brochard J, Dayan P, Bach DR (2025). Critical intelligence: Computing defensive behaviour. Neuroscience & Biobehavioral Reviews, 174, 106213. [DOI3]
Xia Y*, Liu H*, Kälin OK, Gerster S, Bach DR (2025). Measuring Human Pavlovian Reward Conditioning and Memory Retention After Consolidation. Psychophysiology, 62, e70058. [DOI6] [Open Data 17] [Open Data 28] [Open Data 39] [Open Code10]
2024
Mancinelli F*, Sporrer JK*, Myrov V, Melinscak F, Zimmermann J, Huaiyu L, Bach DR (2024). Dimensionality and optimal combination of autonomic fear-conditioning measures in humans. Behavior Research Methods, 56, 6119–6129. [DOI11]
2023
Bach DR (2023). Psychometrics in experimental psychology: A case for calibration. Psychon Bull Rev, 31, 1461–1470, [DOI25].
Bach DR, Sporrer J, Abend R, Beckers T, Dunsmoor JE, Fullana, MA, Gamer M, Gee DG, Hamm A, Hartley CA, Herringa RJ, Jovanovic T, Kalisch R, Knight DC, Lissek S, Lonsdorf TB, Merz CJ, Milad M, Morriss J, Phelps, EA, Pine DS, Olsson A, van Reekum CM, Schiller D (2023). Consensus design of a calibration experiment for human fear conditioning. Neuroscience & Biobehavioral Reviews, 148, 105146. [DOI26] [Open Data27]
Brookes J, Hall S, Frühholz S, Bach, DR (2023). Immersive VR for investigating threat avoidance: The VRthreat toolkit for Unity. Behavior Research Methods, 56, 5040–5054. [DOI28] [Open Data29] [Open Code 130] [Open Code 231]
Sporrer JK, Brookes J, Hall S, Zabbah S, Serratos Hernandez UD, Bach DR (2023). Functional sophistication in human escape. iScience, 26 (11), 108240. [DOI32] [Open Data 133] [Open Data 229] [Open Code31] [Software 134] [Software 230]
Xia Y, Wehrli J, Gerster S, Kroes M, Houtekamer M, Bach DR (2023). Measuring human context fear conditioning and retention after consolidation. Learning & Memory, 30 (7), 139–150. [DOI37] [Open Data 138] [Open Data 239] [Open Data 340] [Open Data 441] [Open Code42]
2022
Ojala KE*, Tzovara A*, Poser BA, Lutti A, Bach DR (2022). Asymmetric representation of aversive prediction errors in Pavlovian threat conditioning. Neuroimage, 263, 119579. [DOI43] [Open Data 144] [Open Data 245]
Tronstad C, Amini M, Bach DR, Martinsen ØG (2022). Current trends and opportunities in the methodology of electrodermal activity measurement. Physiological Measurement, 43, 02TR01. [DOI48]
Wehrli JM, Xia Y, Gerster S, & Bach DR (2022). Measuring human trace fear conditioning. Psychophysiology, 59, e14119. [DOI49] [Open Code50] [Open Data 151] [Open Data 252]
2021
Bach DR (2021). Cross-species anxiety tests in psychiatry – pitfalls and promises. Molecular Psychiatry, 27, 154-163. [DOI53]
Castegnetti G*, Bush D*, Bach DR (2021). Model of theta frequency perturbations and contextual fear memory. Hippocampus, 31, 448-457. [DOI54]
Homan P, Lau HL, Levy I, Raio CM, Bach DR, Carmel D, Schiller S (2021). Evidence for a minimal role of stimulus awareness in reversal of threat learning. Learning & Memory, 28, 95-103. [DOI57]
Moutoussis M, Garzón B, Neufeld S, Bach DR, Rigoli F, Goodyer I, Bullmore E, NSPN consortium, Guitart-Masip M, Dolan RJ (2021). Decision-making ability, psychopathology, and brain connectivity. Neuron, 109, 2025-2040. [DOI58]
2020
Bach DR, Melinščak F (2020). Psychophysiological modelling and the measurement of fear conditioning. Behaviour Research and Therapy, 127, 103576. [DOI61] [Open Article62]
Bach DR, Melinščak F, Fleming SM, Voelkle M (2020). Calibrating the experimental measurement of psychological attributes. Nature Human Behaviour, 4, 1229-1235. [DOI63] [Open Article64]
Bach DR*, Moutoussis M*, Bowler A, NSPN consortium, Dolan RJ (2020). Predictors of risky foraging behaviour in healthy young people. Nature Human Behaviour, 4, 832-843 [DOI65] [Open Article66] [Open Data & Code66]
Melinscak F, Bach DR (2020). Computational optimization of associative learning experiments. PLOS Computational Biology, 16(1), e1007593. [DOI69] [OSF Project70] [Open Code71]
Ojala K, Bach DR (2020). Measuring learning in human classical threat conditioning: translational, cognitive and methodological considerations. Neuroscience and Biobehavioral Reviews, 114, 96-112. [DOI72] [Open Article73]
Privratsky AA, Bush KA, Bach DR, Hahn EM, Cisler JM (2020). Filtering and model-based analysis independently improve skin-conductance response measures in the fMRI environment: validation in a sample of women with PTSD. International Journal of Psychophysiology, 158, 86-95. [DOI74]
Xia Y, Melinščak F, Bach DR (2020). Saccadic scanpath length: an index for human threat conditioning. Behavior Research Methods, 53, 1426-1439. [DOI75] [Open Data 176] [Open Data 277] [Open Data 378] [Open Data 479]
2019
Bach DR, Brown SA, Kleim B, Tyagarajan SK (2019). Extracellular matrix: a new player in memory maintenance and psychiatric disorder. Swiss Medical Weekly, 149, w20060. [DOI82]
Bach DR, Hoffmann M, Finke C, Hurlemann R, Ploner CJ (2019). Disentangling hippocampal and amygdala contribution to human anxiety-like behaviour. Journal of Neuroscience, 39, 8517-8526. [DOI83]
Fullana MA, Dunsmoor JE, Schruers KRJ, Savage HS, Bach DR, Harison BJ (2019). Human fear conditioning: From neuroscience to the clinic. Behaviour Research and Therapy, 124, 103528. [DOI87] [Open Article88]
Korn CW & Bach DR (2019). Minimizing threat via heuristic and optimal policies recruits hippocampus and medial prefrontal cortex. Nature Human Behavior, 3, 733-745. [DOI91] [Open Data 192] [Open Data 293] [Open Data 394] [Open Code92]
Oberrauch S, Sigrist H, Sautter E, Gerster S, Bach DR, Pryce CR (2019). Establishing operant conflict tests for the translational study of anxiety in mice. Psychopharmacology, 236, 2527-2541. [DOI]95 [Open Article96]
Staib M, Abivardi A, Bach DR (2019). Primary auditory cortex representations of fear-conditioned musical sounds. Human Brain Mapping, 41, 882–891. [DOI97] [Open Data 198] [Open Data 299]
Tzovara A, Meyer SS, Bonaiuto JJ, Abivardi A, Dolan RJ, Barnes GR, Bach DR (2019). High-precision magnetoencephalography for reconstructing amygdalar and hippocampal oscillations during prediction of safety and threat. Human Brain Mapping, 40, 4114-4129. [DOI100]
Xia Y, Gurkina A, Bach DR (2019). Pavlovian-to-instrumental transfer after human threat conditioning. Learning & Memory, 26, 167-175. [DOI101] [Open Data1102] [Open Data 2103]
2018
Bach DR, Korn CW, Vunder J, Bantel A (2018). Effect of valproate and pregabalin on human anxiety-like behaviour in a randomised controlled trial. Translational Psychiatry, 8, 157. [DOI104]
Bach DR, Castegnetti G, Korn CW, Gerster S, Melinscak F, Moser T (2018). Psychophysiological modelling – current state and future directions. Psychophysiology, 55, e13209. [DOI107] [Open Article108]
Gerster S, Namer B, Elam M, Bach DR (2018). Testing a linear time invariant model for skin conductance responses by intraneural recording and stimulation. Psychophysiology, 55, e12986. [DOI109] [Open Data1-2110] [Open Data3111]
Korn CW & Bach DR (2018). Heuristic and optimal policy computations in the human brain during sequential decision-making. Nature Communications, 9, 325. [DOI112] [Open Data 1113] [Open Data 2114]
Staib M & Bach DR (2018). Stimulus-invariant auditory cortex threat encoding during fear conditioning with simple and complex sounds. Neuroimage, 166, 276-284. [DOI115] [Open Data 1116] [Open Data 2111]
Tzovara A, Korn CW & Bach DR (2018). Human Pavlovian fear conditioning conforms to probabilistic learning. PLOS Computational Biology, 14, e1006243. [DOI117] [Open Data 1118] [Open Data 2116] [Open Data 3119] [Open Data 4120]
2017
Bach DR (2017). The cognitive architecture of anxiety-like behavioural inhibition. Journal of Experimental Psychology: Human Perception and Performance, 43,18-29. [DOI123]
Bach DR, & Dayan, P (2017). Algorithms for survival: a comparative perspective on emotions. Nature Reviews Neuroscience, 18, 311-319. [DOI124] [Open Article125]
Bach DR, Symmonds M, Barnes G, Dolan RJ (2017). Whole-brain neural dynamics of probabilistic reward prediction. Journal of Neuroscience, 37, 3789-3798. [DOI126]
Castegnetti G, Tzovara A, Staib M, Gerster S, Bach DR (2017). Assessing fear learning via conditioned respiratory amplitude responses. Psychophysiology, 54, 215-223. [DOI127] [Open Data 1128] [Open Data 2129] [Open Data 3130] [Open Data 4131] [Open Data 5132]
Homan P, Lin Q, Murrough JW, Soleimani L, Bach DR, Clem RL, Schiller D (2017). Prazosin during threat discrimination boosts memory of the safe stimulus. Learning & Memory, 24, 597-601. [DOI133]
Khemka S, Barnes G, Dolan RJ, Bach DR (2017). Dissecting the function of hippocampal oscillations in a human anxiety model. Journal of Neuroscience, 37, 6869-6876. [DOI134]
Khemka S, Tzovara A, Gerster S, Quednow BB, Bach DR (2017). Modelling startle eye blink electromyogram to assess fear learning. Psychophysiology, 54, 202-214. [DOI135] [Open Data 1136] [Open Data 2130] [Open Data 3128] [Open Data 4]
Korn CK, Staib M, Tzovara A, Castegnetti G, Bach DR (2017). A pupil size response model to assess fear learning. Psychophysiology, 54, 330-343. [DOI137] [Open Data 1118] [Open Data 2116] [Open Data 3119] [Open Data 4138] [Open Data 5139]
Korn CK, Vunder J, Miro J, Fuentemilla L, Hurlemann R, Bach DR (2017). Amygdala lesions reduce anxiety-like behavior in a human benzodiazepine-sensitive approach-avoidance conflict test. Biological Psychiatry, 82, 522-531. [DOI140]
2016
Bach DR, Gerster S, Tzovara A, Castegnetti G (2016). A linear model for event-related respiration responses. Journal of Neuroscience Methods, 270, 174-155. [DOI141] [Open Data 1-2142] [Open Data 3143] [Open Data 4144]
Castegnetti G, Tzovara A, Staib M, Paulus PC, Hofer N, & Bach DR (2016). Modelling fear-conditioned bradycardia in humans. Psychophysiology, 53, 930-939. [DOI145] [Open Data 1146] [Open Data 2147] [Open Data 3148] [Open Data 4131]
Freund P, Friston K, Thompson AJ, Stephan KE, Ashburner J, Bach DR, Nagy Z, Helms G, Draganski B, Mohammadi S, Schwab ME, Curt A, Weiskopf N (2016). Embodied neurology: an integrative framework for neurological disorders. Brain, 139, 1855-1861. [DOI149]
Korn CW & Bach DR (2016). A solid frame for the window on cognition: Modelling event-related pupil responses. Journal of Vision, 16:28,1-6. [DOI150] [Open Data 1151] [Open Data 2152]
Paulus PC, Castegnetti G, & Bach DR (2016). Modeling event-related heart period responses. Psychophysiology, 53, 837-846. [DOI153] [Open Data 1-2154] [Open Data 3154] [Open Data 4155]
Stephan KE, Bach DR, Fletcher PC, Flint J, Frank MJ, Friston KJ, Heinz A, Huys QJ, Owen MJ, Binder EB, Dayan P, Johnstone EC, Meyer-Lindenberg A, Montague PR, Schnyder U, Wang XJ, Breakspear M (2016). Charting the landscape of priority problems in psychiatry, part 1: classification and diagnosis. Lancet Psychiatry, 3, 77-83. [DOI156] [Open Article157]
Stephan KE, Binder EB, Breakspear M, Dayan P, Johnstone E, Meyer-Lindenberg A, Schnyder U, Wang XJ, Bach DR, Fletcher PC, Flint J, Frank MJ, Heinz A, Huys QJM, Montague PR, Owen JM, Friston KJ (2016). Charting the landscape of priority problems in psychiatry, part 2: pathogenesis and aetiology. Lancet Psychiatry, 3, 84-90. [DOI158] [Open Article159]
2015
Staib M, Castegnetti G, Bach DR (2015). Optimising a model-based approach to inferring fear learning from skin conductance responses. Journal of Neuroscience Methods, 255, 131-138.[DOI162] [Open Data 1163] [Open Data 2164] [Open Data 399]
Bach DR, Staib M (2015). A matching pursuit algorithm for inferring tonic sympathetic arousal from spontaneous skin conductance fluctuations. Psychophysiology, 52, 1106-12. [DOI165] [Open Data 1166] [Open Data 2167] [Open Data 3168]
Bach DR, Furl N, Barnes G, Dolan RJ (2015). Sustained Magnetic Responses in Temporal Cortex Reflect Instantaneous Significance of Approaching and Receding Sounds. PLOS ONE, 10, e0134060. [DOI169]
Bach DR, Seifritz E, Dolan RJ (2015). Temporally unpredictable sounds exert a context-dependent influence on evaluation of unrelated images. PLOS ONE, 10, e0131065. [DOI170] [Open Data 1171] [Open Data 2172] [Open Data 3173] [Open Data 4174]
Bach DR (2015). A cost minimisation and Bayesian inference model predicts startle reflex modulation across species. Journal of Theoretical Biology, 370, 53-60. [DOI177]
Bach DR, Hurlemann R, Dolan RJ (2015). Impaired threat prioritisation after selective bilateral amygdala lesions. Cortex, 63, 206-213. [DOI178]
2014
Bach DR (2014). A head-to-head comparison of SCRalyze and Ledalab, two model-based methods for skin conductance analysis. Biological Psychology, 103, 63-68. [DOI179] [Open Data 1171] [Open Data 2173] [Open Data 3180]
Bach DR, Guitart-Masip M, Packard PA, Miró J, Falip M, Fuentemilla L, Dolan RJ (2014). Human hippocampus arbitrates approach-avoidance conflict. Current Biology, 24, 541-547. [DOI181]
Bach DR, Schmidt-Daffy M, Dolan RJ (2014). Facial expression influences face identity recognition during the attentional blink. Emotion, 14, 1007-1013. [DOI182]
Bulganin L, Bach DR, Wittmann BC (2014). Prior fear conditioning and reward learning interact in fear and reward networks. Frontiers in Behavioral Neuroscience, 8, 67. [DOI183]
Pooresmaeli A, FitzGerald THB, Bach DR, Toelch U, Ostendorf F, Dolan RJ (2014). Crossmodal effects of value on perceptual acuity and stimulus encoding. PNAS, 111, 15244-15429. [DOI184]
Pooresmaeili A, Bach DR, Dolan RJ (2014). The effect of visual salience on memory-based choices. Journal of Neurophysiology, 111, 481-487. [DOI185]
Toelch U, Bach DR, Dolan RJ (2014). The neural underpinnings of an optimal exploitation of social information under uncertainty. Social Cognitive and Affective Neuroscience, 9, 1746-1753. [DOI186]
2013
Bach DR, & Friston KJ (2013). Model-based analysis of skin conductance responses: Towards causal models in psychophysiology. Psychophysiology, 50, 15-22 [DOI187] [Open Article188]
Bach DR, Friston KJ, Dolan RJ (2013). An improved algorithm for model-based analysis of evoked skin conductance responses. Biological Psychology, 94, 490-497. [DOI189] [Open Data 1171] [Open Data 2173]
Bach DR, Hurlemann R, & Dolan RJ (2013). Unimpaired discrimination of fearful prosody after amygdala lesion. Neuropsychologia, 51, 2070-2074. [DOI190]
2012
Bach DR, & Dolan RJ (2012). Knowing how much you don't know: a neural organization of uncertainty estimates. Nature Reviews Neuroscience, 13, 572-586. [DOI191]
Bach DR & Friston KJ (2012). No evidence for a negative prediction error signal in peripheral indicators of sympathetic arousal. Neuroimage, 16, 883-884. [DOI192]
Bauer M, Kluge C, Bach D, Bradbury D, Heinze HJ, Dolan RJ, & Driver J (2012). Cholinergic enhancement of visual attention and neural oscillations in the human brain. Current Biology, 22, 397-402. [DOI193]
Campbell-Meiklejohn DK, Kanai R, Bahrami B, Bach DR, Dolan RJ, Roepstorff A, & Frith CD (2012). Structure of orbitofrontal cortex predicts social influence. Current Biology, 22, R123-R124. [DOI194]
Chumbley JR, Flandin G, Bach DR, Daunizeau J, Fehr E, Dolan RJ, & Friston KJ (2012). Learning and Generalization under Ambiguity: An fMRI Study. PLOS Computational Biology, 8 (1), e1002346. [DOI195]
2011
Bach DR, Behrens TE, Garrido L, Weiskopf N, Dolan RJ (2011). Deep and superficial amygdala nuclei projections revealed in vivo by probabilistic tractography. Journal of Neuroscience, 31, 618-23. [DOI196]
Bach DR, Buxtorf K, Strik WK, Neuhoff JG, & Seifritz E (2011). Evidence for impaired sound intensity processing in schizophrenia. Schizophrenia Bulletin, 37, 426-431. [DOI197]
Bach DR, Daunizeau J, Kuelzow N, Friston KJ, & Dolan RJ (2011). Dynamic causal modelling of spontaneous fluctuations in skin conductance. Psychophysiology, 48, 252-57. [DOI198]
Bach DR, Hulme O, Penny W, & Dolan RJ (2011). The known unknowns: Neural representation of second-order uncertainty, and ambiguity. Journal of Neuroscience, 31, 4811-4820. [DOI199]
Bach DR, Talmi D, Hurlemann R, Patin A, & Dolan RJ (2011). Automatic relevance detection in the absence of a functional amygdala. Neuropsychologia, 49, 1302-1305. [DOI200]
Bach DR, Weiskopf N, & Dolan RJ (2011). A stable sparse fear memory trace in human amygdala. Journal of Neuroscience, 31, 9383-9389. [DOI201]
Guitart-Masip M, Fuentemilla L, Bach DR, Huys QJM, Dayan P, Dolan RJ, & Duzel E (2011). Action dominates valence in anticipatory representations in the human striatum and dopaminergic midbrain. Journal of Neuroscience, 31, 7867-7875. [DOI202]
Klein-Flügge MC, Hunt LT, Bach DR, Dolan RJ, & Behrens TEJ (2011). Dissociable Reward and Timing Signals in Human Midbrain and Ventral Striatum. Neuron, 72, 654-664. [DOI203]
Nicolle A, Bach DR, Driver J, & Dolan RJ (2011). A Role for the Striatum in Regret-related Choice Repetition. Journal of Cognitive Neuroscience, 23, 845-56. [DOI204]
Nicolle A, Bach DR, Frith C, & Dolan RJ (2011). Amygdala involvement in self-blame regret. Social Neuroscience, 6, 178-89. [DOI205]
Nicolle A, Fleming SM, Bach DR, Driver J, & Dolan RJ (2011). A Regret-Induced Status Quo Bias. Journal of Neuroscience, 31, 3320-3327. [DOI206]
Symmonds M, Wright ND, Bach DR, & Dolan RJ (2011). Deconstructing risk: Separable encoding of variance and skewness in the brain. Neuroimage, 58, 1139-1149. [DOI207]
2010
Bach DR, Daunizeau J, Friston KJ, & Dolan RJ (2010). Dynamic causal modelling of anticipatory skin conductance responses. Biological Psychology, 85, 163-70. [DOI208]
Bach DR, Friston KJ, & Dolan RJ (2010). Analytic measures for quantification of arousal from spontaneous skin conductance fluctuations. International Journal of Psychophysiology, 76, 52-55. [DOI209]
Bach DR, Flandin G, Friston KJ, & Dolan RJ (2010). Modelling event-related skin conductance responses. International Journal of Psychophysiology, 75, 349-356. [DOI210]
Bach DR, Kindler J, & Strik WK (2010). Elevated bilirubin in acute and transient psychotic disorder. Pharmacopsychiatry, 43, 12-16. [DOI]211
Campbell-Meiklejohn DK, Bach DR, Roepstorff A, Dolan RJ, & Frith CD (2010). How the Opinion of Others Affects our Valuation of Objects. Current Biology, 20, 1165-70. [DOI212]
Fitzgerald TH, Seymour B, Bach DR, & Dolan RJ (2010). Differentiable Neural Substrates for Learned and Described Value and Risk. Current Biology, 20, 1823-29. [DOI213]
2009
Bach DR, Buxtorf K, Grandjean D, & Strik WK (2009). The influence of emotion clarity on emotional prosody identification in paranoid schizophrenia. Psychological Medicine, 39, 927-938. [DOI214]
Bach DR, Flandin G, Friston KJ, & Dolan RJ (2009). Time-series analysis for rapid event-related skin conductance responses. Journal of Neuroscience Methods, 184, 224-234. [DOI210]
Bach DR, Herdener M, Grandjean D, Sander D, Seifritz E, & Strik WK (2009). Altered lateralisation of emotional prosody processing in schizophrenia. Schizophrenia Research, 110, 180-187.[DOI215]
Herdener M, Lehmann C, Esposito F, Di Salle F, Federspiel A, Bach DR, Scheffler K, & Seifritz E (2009). Brain responses to auditory and visual stimulus offset: Shared representations of temporal edges. Human Brain Mapping, 30, 725-733. [DOI216]
Bach DR, Neuhoff JG, Perrig W, & Seifritz E (2009). Looming sounds as warning signals: the function of motion cues. International Journal of Psychophysiology, 74, 28-33. [DOI217]
Bach DR, Seymour B, & Dolan RJ (2009). Neural activity associated with the passive prediction of ambiguity and risk for aversive events. Journal of Neuroscience, 29, 1648-1656. [DOI218]
Links
- https://doi.org/10.1016/j.jbusres.2025.115352
- https://osf.io/2a6qp/
- https://doi.org/10.1016/j.neubiorev.2025.106213%20
- https://doi.org/10.3758/s13428-025-02630-5%20
- https://osf.io/yxvfz/
- https://doi.org/10.1111/psyp.70058
- https://doi.org/10.5281/zenodo.12580446
- https://doi.org/10.5281/zenodo.12580463
- https://osf.io/9s6uh/
- https://bachlab.github.io/pspm
- https://doi.org/10.3758/s13428-024-02341-3
- https://doi.org/10.1016/j.bbr.2024.115192
- https://osf.io/74n6c/
- https://doi.org/10.1007/s00213-024-06540-w
- https://static-content.springer.com/esm/art%3A10.1007%2Fs00213-024-06540-w/MediaObjects/213_2024_6540_MOESM1_ESM.pdf
- https://doi.org/10.1016/j.euroneuro.2024.08.006
- https://ars.els-cdn.com/content/image/1-s2.0-S0924977X24001962-mmc1.pdf
- https://doi.org/10.1038/s41398-024-02732-2
- https://zenodo.org/records/7601792
- https://osf.io/p8jtb/
- https://doi.org/10.1038/s41598-023-41357-1
- https://zenodo.org/record/8239465
- https://doi.org/10.1016/j.jmp.2023.102818
- https://osf.io/dfg9e/
- https://doi.org/10.3758/s13423-023-02421-z
- https://doi.org/10.1016/j.neubiorev.2023.105146
- https://osf.io/gsb2e/
- https://doi.org/10.3758/s13428-023-02241-y
- https://osf.io/2b3k7/
- https://xip.uclb.com/product/vrthreat-toolkit-for-unity
- https://github.com/bachlab/vrthreat
- https://doi.org/10.1016/j.isci.2023.108240
- https://osf.io/w4c73/
- http://lib.stat.cmu.edu/R/CRAN/
- https://doi.org/10.1523/ENEURO.0243-22.2023
- https://www.eneuro.org/content/10/2/ENEURO.0243-22.2023/tab-figures-data
- https://doi.org/10.1101/lm.053781.123
- https://doi.org/10.5281/zenodo.6418684%20%20
- https://doi.org/10.5281/zenodo.6418992%20
- https://doi.org/10.5281/zenodo.6419011%20
- https://doi.org/10.5281/zenodo.6419020%20
- https://osf.io/4mxae/
- https://doi.org/10.1016/j.neuroimage.2022.119579
- https://zenodo.org/record/3872055#.Y-4QVHaZND8
- https://zenodo.org/record/6983543#.Y-4QQXaZND8
- https://doi.org/10.1016/j.biopsych.2022.01.021
- https://www.sciencedirect.com/science/article/pii/S0006322322000646?via%3Dihub#appsec1
- https://discovery.ucl.ac.uk/id/eprint/10143525/1/Tronstad%2Bet%2Bal_2022_Physiol._Meas.pdf
- https://doi.org/10.1111/psyp.14119
- https://osf.io/wbkfj/
- https://doi.org/10.5281/zenodo.6024202
- https://zenodo.org/record/6024245#.ZC03AXbP1D8
- https://doi.org/10.1038/s41380-021-01299-4
- https://doi.org/10.1002/hipo.23307
- http://doi.org/10.1016/j.neuropsychologia.2021.108016
- https://github.com/LisaDoppelhofer/SocialMotives_2021
- https://doi.org/10.1101/lm.050997.119
- https://doi.org/10.1016/j.neuron.2021.04.019
- https://doi.org/10.1523/JNEUROSCI.2732-19.2020
- https://doi.org/10.5281/zenodo.3893442
- https://doi.org/10.1016/j.brat.2020.103576
- http://bachlab.org/bach-melinscak-2020-brat-pspm_review
- https://doi.org/10.1038/s41562-020-00976-8%20
- http://rdcu.be/caRkI
- https://doi.org/10.1038/s41562-020-0867-0
- https://europepmc.org/article/MED/32393840
- https://doi.org/10.1038/s41467-020-16202-y
- https://github.com/bachlab/megaa
- https://doi.org/10.1371/journal.pcbi.1007593
- https://osf.io/5ktaf/
- https://doi.org/10.5281/zenodo.2574630
- https://doi.org/10.1016/j.neubiorev.2020.04.019
- https://psyarxiv.com/2dzkj/
- https://doi.org/10.1016/j.ijpsycho.2020.09.015
- https://doi.org/10.3758/s13428-020-01490-5
- https://doi.org/10.5281/zenodo.2641733
- https://doi.org/10.5281/zenodo.2641737
- https://doi.org/10.5281/zenodo.3667714
- https://doi.org/10.5281/zenodo.1168493
- https://doi.org/10.1101/lm.050211.119
- https://doi.org/10.5281/zenodo.3555306
- https://doi.org/10.4414/smw.2019.20060
- https://doi.org/10.1523/JNEUROSCI.0412-19.2019
- https://doi.org/10.1523/JNEUROSCI.1285-19.2019
- https://zenodo.org/record/3460921#.XigJ_G5FyM8
- http://doi.org/10.17605/OSF.IO/UJHXW
- https://doi.org/10.1016/j.brat.2019.103528
- http://bachlab.org/wp-content/uploads/2020/01/Fullana-et-al.-2019-BRAT-FC_Review.pdf
- https://doi.org/10.1371/journal.pcbi.1007443
- http://osf.io/5kfus
- https://doi.org/10.1038/s41562-019-0603-9
- https://github.com/dnhi-lab/minimizing_threat.git
- https://doi.org/10.6084/m9.figshare.7929914.v1
- https://neurovault.org/collections/5046/
- https://doi.org/10.1007/s00213-019-05315-y
- http://bachlab.org/wp-content/uploads/2020/01/Oberrauch-et-al.-2019-Psychopharmacology-Mouse_AAC.pdf
- https://doi.org/10.1002/hbm.24846
- https://doi.org/10.5281/zenodo.4071223
- https://doi.org/10.5281/zenodo.4059297
- https://doi.org/10.1002/hbm.24689
- https://doi.org/10.1101/lm.049338.119
- https://zenodo.org/record/2641734#.XihXB25FyUk
- https://zenodo.org/record/2641738#.XihXJG5FyUk
- https://doi.org/10.1038/s41398-018-0206-7
- https://doi.org/10.1038/mp.2017.65
- https://zenodo.org/record/1887580#.XigKJm5FyM8
- https://doi.org/10.1111/psyp.13209
- https://discovery.ucl.ac.uk/id/eprint/10070115/
- https://doi.org/10.1111/psyp.12986
- https://doi.org/10.5281/zenodo.3865363
- https://doi.org/10.5281/zenodo.4045656
- https://doi.org/10.1038/s41467-017-02750-3
- https://figshare.com/s/1a4d75cb4176a3fef040
- https://neurovault.org/collections/3242/
- https://doi.org/10.1016/j.neuroimage.2017.11.009
- https://doi.org/10.5281/zenodo.1443332
- https://doi.org/10.1371/journal.pcbi.1006243
- https://zenodo.org/record/1168494#.XigXGG5FyM8
- https://zenodo.org/record/1211610#.Xiga_25FyM8
- https://doi.org/10.5281/zenodo.1295638
- https://doi.org/10.1002/hbm.23639
- https://doi.org/10.5281/zenodo.570535
- https://doi.org/10.1037/xhp0000282
- https://doi.org/10.1038/nrn.2017.35
- http://bachlab.org/wp-content/uploads/2018/03/Bach-Dayan-2017-NRN-AlgorithmsForSurvival.pdf
- https://doi.org/10.1523/JNEUROSCI.2943-16.2017
- https://doi.org/10.1111/psyp.12778
- https://doi.org/10.5281/zenodo.1405394
- https://doi.org/10.5281/zenodo.1404810
- https://doi.org/10.5281/zenodo.1887738
- https://doi.org/10.5281/zenodo.3980837
- https://doi.org/10.5281/zenodo.1288494
- https://doi.org/10.1101/lm.045898.117
- https://doi.org/10.1523/JNEUROSCI.1834-16.2017
- https://doi.org/10.1111/psyp.12775
- https://zenodo.org/record/3430920#.XigaN25FyM8
- https://doi.org/10.1111/psyp.12801
- https://doi.org/10.5281/zenodo.3601251
- https://zenodo.org/record/1288494#.XigXb25FyM8
- https://doi.org/10.1016/j.biopsych.2017.01.018
- https://doi.org/10.1016/j.jneumeth.2016.06.001
- https://zenodo.org/record/3405226#.XigX725FyM8
- https://doi.org/10.5281/zenodo.2592193
- https://doi.org/10.5281/zenodo.3428708
- https://doi.org/10.1111/psyp.12637
- https://zenodo.org/record/1405394#.XigJr25FyM8
- https://zenodo.org/record/1443332#.XigYpW5FyM8
- https://zenodo.org/record/1404810#.XigagW5FyM8
- https://doi.org/10.1093/brain/aww076
- https://doi.org/10.1167/16.3.28
- https://doi.org/10.5281/zenodo.3608706
- https://doi.org/10.5281/zenodo.4147043
- https://doi.org/10.1111/psyp.12622
- https://zenodo.org/record/2592194#.XigLfW5FyM8
- https://doi.org/10.5281/zenodo.3860807
- https://doi.org/10.1016/S2215-0366(15)00361-2
- http://bachlab.org/wp-content/uploads/2013/03/Stephan-Bach-et-al.-HilbertList_Part1_LancetPsychiatry.pdf
- https://doi.org/10.1016/S2215-0366(15)00360-0
- http://bachlab.org/wp-content/uploads/2020/01/Stephan-et-al.-HilbertList_Part2_LancetPsychiatry.pdf
- https://doi.org/10.1371/journal.pcbi.1004646
- http://dx.doi.org/10.5061/dryad.bd4gs
- https://doi.org/10.1016/j.jneumeth.2015.08.009
- https://doi.org/10.5281/zenodo.321641
- https://doi.org/10.5281/zenodo.4115079
- https://doi.org/10.1111/psyp.12434
- https://doi.org/10.5281/zenodo.269654
- https://doi.org/10.5281/zenodo.61718
- https://doi.org/10.5281/zenodo.3900168
- https://doi.org/10.1371/journal.pone.0134060
- https://doi.org/10.1371/journal.pone.0131065
- https://doi.org/10.5281/zenodo.3515884
- https://doi.org/10.5281/zenodo.3515938
- https://doi.org/10.5281/zenodo.3611484
- https://doi.org/10.5281/zenodo.3611489
- https://doi.org/10.1371/journal.pcbi.1004301
- https://doi.org/10.1371/journal.pcbi.1004301.s012
- https://doi.org/10.1016/j.jtbi.2015.01.031
- https://doi.org/10.1016/j.cortex.2014.08.017
- https://doi.org/10.1016/j.biopsycho.2014.08.006
- http://doi.org/10.5281/zenodo.3885797
- https://doi.org/10.1016/j.cub.2014.01.046
- https://doi.org/10.1037/a0037945
- https://doi.org/10.3389/fnbeh.2014.00067
- https://doi.org/10.1073/pnas.1408873111
- https://doi.org/10.1152/jn.00068.2013
- https://doi.org/10.1093/scan/nst173
- https://doi.org/10.1111/j.1469-8986.2012.01483.x
- http://bachlab.org/wp-content/uploads/2020/01/Bach-Friston-2013-Psychophysiology-SCR-Model-Review.pdf
- https://doi.org/10.1016/j.biopsycho.2013.09.010
- https://doi.org/10.1016/j.neuropsychologia.2013.07.005
- https://doi.org/10.1038/nrn3289
- https://doi.org/10.1016/j.neuroimage.2011.08.091
- https://doi.org/10.1016/j.cub.2012.01.022
- https://doi.org/10.1016/j.cub.2012.01.012
- https://doi.org/10.1371/journal.pcbi.1002346
- https://doi.org/10.1523/JNEUROSCI.2744-10.2011
- https://doi.org/10.1093/schbul/sbp092
- https://www.caian.uni-bonn.de/%20https:/doi.org/10.1111/j.1469-8986.2010.01052.x
- https://doi.org/10.1523/JNEUROSCI.1452-10.2011
- https://doi.org/10.1016/j.neuropsychologia.2011.02.032
- https://doi.org/10.1523/JNEUROSCI.1524-11.2011
- https://doi.org/10.1523/JNEUROSCI.6376-10.2011
- https://doi.org/10.1016/j.neuron.2011.08.024
- https://doi.org/10.1162/jocn.2010.21510
- https://doi.org/10.1080/17470919.2010.506128
- https://doi.org/10.1523/jneurosci.5615-10.2011
- https://doi.org/10.1016/j.neuroimage.2011.06.087
- https://doi.org/10.1016/j.biopsycho.2010.06.007
- https://doi.org/10.1016/j.ijpsycho.2010.01.011
- https://doi.org/10.1016/j.jneumeth.2009.08.005
- https://www.thieme-connect.de/products/ejournals/abstract/10.1055/s-0030-1263170
- https://doi.org/10.1016/j.cub.2010.04.055
- https://doi.org/10.1016/j.cub.2010.08.048
- https://doi.org/10.1017/S0033291708004704
- https://doi.org/10.1016/j.neuroimage.2008.05.034
- https://doi.org/10.1002/hbm.20539
- https://doi.org/10.1016/j.ijpsycho.2009.06.004
- https://doi.org/10.1523/JNEUROSCI.4578-08.2009